

وزارة الموارد المائية والري والتهرباء مركز البحوث الهيدوليكية السمنار العلمي الثالث

Water Balance Study and Validation of Reservoir Releases for Merowe Dam

Introduction:

- One of the studies proposed by MDEC
- On the main Nile near the 4th cataract,
- oLargest storage capacity in Sudan 12.5 Bm³
- Largest installed power 1250 MW
- Accurate reservoir water balance is crucial for proper reservoir operation & water management

Objectives:

Accurately validate all components of the water balance of Merowe reservoir, specifically:

- •Validation of reservoir inflows at Elkoro station
 - Discharge measurement equipment & procedure
 - Computation method (rating curves)
 - Flow time series (daily, 10-days, monthly and annual)
 - Upstream stations Barbar, (Tabya + downstream Girba dam);

Methodology:

- ✓ Collection of historical hydrological, reservoir/dam d
- ✓ Limited validation discharge measurements;
- ✓ Development of rating curves for all stations;
- ✓ Validation of inflow discharge data at Elkoro;
- ✓ Validation of reservoir releases at Elhesai;
- ✓ Validation of gates equations;
- ✓ Validation of reservoir's evaporation rates;
- ✓ Conduction of reservoir balance using the equation;
- ✓ Development of User Interface.

8	Computed daily discharges from automatic gauge at Elhesai	2015
/ater	levels	
9	Water levels at Barbar,	200
10	water level at Elkoro	200
11	water level at Elhesai	200
12	water level at Dongola	2007
13	Upstream reservoir water levels	2009
14	Downstream reservoir water levels	2009
eserv	oir Characteristics	
15	Gates specifications, dimensions, bottom level	pro
16	Low Level Sluice gates' equations and tables	pro
7	Bottom outlets equations and charts	pro
18	Overflow spillway equations /charts / tables	pro
19	Bathymetric survey results (Level/Volume, Level/surface	pro
	area relationships)	
pera	tion	
20	Daily Spillway gates openings	201
21	Daily Bottom outlets openings	201
22	Daily Overflow spillway openings	201
23	Generated power (GWH)	2010
24	Hourly power station data (Date& time, Stroke, Net head,	201
	Power generated, Discharge and Efficiency)	
/apo	ration	
25	Monthly average evaporation at Dongola	196
26	Monthly average evaporation at Karima	195
27	Monthly/daily Evaporation rates (mm/day)	pr
28	Monthly average evaporation from open water	pr
29	Evaporation losses (Mm³/day)	201
imat	ic data	
	HRC Hydraulics Rese	arch Center

Results:

- Discharge measurements conducted at:
 - ✓ Elkoro station (inflow)
 - ✓ Barbar station
 - √ Ehesai (Release)
- No significant difference in measured discharges (<5%)

Inflows at Elkoro station:

- o Discharge measurements no significant diff.
- Rating curves of MDEC & HRC are identical;
- No diff. in computed daily, 10-days, monthly and annual discharges (MDEC, HRC & HD);

Computed annual Flow at Elkoro

Barbar station:

- Scatter in rating curve at high discharges
- No differences in daily flows bet. HRC & T+DSG
- Some differences at high flows daily,
 and monthly bet. HD & T+DSG
- Flows at Barbar less than (DS El-Girba + Tabya)
 computed HD
- No difference when flows at Barbar computed year/year

Releases at Elhesai station:

- Discharge measurements ADCP good
- Procedure for deriving rating curve is good
- Scatter in rating curve high flows;
- Degrading measuring section
- o diff. in computed daily, 10-days, monthly and

annual discharges (HRC & MDEC);

Dongola station:

- o Dongola rating curve is good
- Stable measuring section
- Elhesai-HRC > Dongola (0.7 5.7%)
- ○Elhesai-MDEC > Dongola (5.6-9.2%)

Reservoir volume/area-level relationships

- OA bathymetric survey conduct in 2014
- OBased on 2003 Bathymetric survey
- ○Operation level between 285m 301m

Reservoir Volume:

 $V(Mm^3) = 0.216x^3 - 176.2x^2 + 47947x - 4E+06, R^2=1$

Reservoir Surface Area:

$$A(km^2) = 0.020x^3 - 17.48x^2 + 4954.x - 46970, R^2=1$$

Reservoir evaporation

- Monthly evaporation rates were provided by MDEC
- OMonthly /daily evaporation rates from reservoir- Class-
- A pan records of Dongola, and Karima popen water
- Validated Penman Method (1948).
- Daily reservoir evaporation is the product of the daily evaporation rate and the surface area of the reservoir

Reservoir Water Balance:

$$Q_{in} + R = Q_{out} + Abs + E + Seep + \Delta s$$

Q_{in} = Inflow at Elkoro,

R= Direct rainfall on the reservoir (≈0),

Q_{out}= Release at Ehesai,

E= Evaporation losses,

Abs =Abstraction by irrigation schemes upstream reservoir, Annual Reservoir Water Balance

Seep= Seepage losses,

 Δs = change in storage content of the reservoir.

Graphical User Interface

- ODeveloped for Merowe dam operation.
- Can be modified for other dams
- OMain components are:
 - ➤ Daily operation data entry
 - ➤ Reservoir operation
 - ➤ Water balance
 - ➤Output screen
 - Bulletin
 - Time series management
 - Graph
 - Histograms

11/12/2017

Conclusions

1. Elkoro station

- ODischarge measurements at Elkoro agreed with HRC
- OMDEC method of deriving rating curves at Elkoro is compatible with HRC method.
- Elkoro measuring section is <u>stable</u>
- No sig. diff. in computed discharges by MDEC & HRC for Elkoro
- MDEC discharge series for Elkoro is reliable

2. Elhesai station

- ODischarge measurements at Elhesai agreed with HRC
- OMDEC method of deriving rating curves at Elhesai is compatible with HRC method.
- oElhesai measuring section is degrading
- No sig. diff. in computed discharges by MDEC & HRC for Elhesai
- MDEC discharge series for Elhesai is affected by measuring section degradation
- Annual water balance for the reservoir is good
- 3. Developed UI will enhance the daily operation of the dam

Thank you

Rating curve for computed flow vs stage at Barbar by HD (2007-2017)

السمنار العلمي الثالث - " معا من أجل التنمية المتكاملة"

